Реакции электрофильного присоединения к атому азота

2.1. Реакции электрофильного присоединения к атому азота

В гетероциклических соединениях, содержащих иминовый фрагмент (C=N) как составную часть структуры — пиридинах, хинолинах, изохинолинах, 1,2- и 1,3-азолах и других, неподелённая электронная пара атома азота не включена в ароматическую π-систему (разд. 1.2.) и, следовательно, способна к взаимодействию с электрофильными реагентами аналогично простым аминам. Другими словами, такие гетероциклические соединения проявляют свойства оснований и способны присоединять протон и другие электрофилы по атому азота. Образующиеся при этом соли могут быть выделены.

Рисунок 1. Раздел 2.1. Реакции электрофильного присоединения к атому азота

В случае обратимых реакций присоединения, например, протонирования, положение равновесия определяется значением pKa гетероциклического соединения [1] и зависит от заместителей, присутствующих в гетероцикле. Электронодонорные заместители увеличивают основность, а электроноакцепторные понижают силу основания. Значения pKa простых производных пиридина близко к 5, основность 1,2- и 1,3-азолов зависит от характера второго гетероатома, а для пиразола и имидазола, содержащих два атома азота, значение pKa равно соответственно 2,5 и 7,1.

Нуклеофильность атома азота иминного фрагмента коррелирует с основностью, хотя и не всегда. Заместители у атома углерода, соседнего с иминым атомом азота, могут оказывать существенное влияние на лёгкость протекания реакции с алкилгалогенидами, приводящей либо к образованию соответствующих N+-алкильных солей [2], либо N+H-солей в результате 1,2-элиминирования молекулы галогеноводорода. Показано, что скорость реакции N-алкилирования уменьшается в 3 раза за счёт стерического взаимодействия при введении одной метальной группы в α-положение к атому азота пиридина, а введение двух метальных групп в положения 2 и 6 уменьшает скорость реакций алкилирования в 12-40 раз [3].

Экстремальный случай — 2,6-ди-трет-бутилпиридин, который не алкилируется метилиодидом даже при повышенном давлении; метилирование такого производного пиридина может быть осуществлено при использовании чрезвычайно реакционноспособного метилового эфира фторсульфоновой кислоты при высоком давлении [4]. Количественная оценка реакционной способности атома азота определяется как стерическими (особенно при наличии заместителя в α-положении), так и электронными эффектами: так, 3-метилпи-ридин реагирует быстрее (х 1,6) незамещённого пиридина, а 3-хлорпиридин — медленнее (х 0,14). Заместители в пери-положении оказывают существенное влияние на скорость реакции с метилодидом: так, скорости реакции пиридина, изохинолина (отсутствует атом водорода в пери-положении), хинолина и 8-метилхинолина равны соответственно 50,69,8 и 0,008.

На скорость образования четвертичных солей оказывают влияние также и другие факторы. Например, все диазины взаимодействуют с метилиодидом медленнее, чем пиридин. Пиридазин, хотя и представляет собой наиболее слабое среди диазинов основание по сравнению с пиридином (pKa 2,3), реагирует с метилиодидом быстрее, чем другие диазины. Связано это с проявлением «α-эффекта», то есть увеличением нуклеофильности в результате взаимного отталкивания неподелённых пар электронов двух непосредственно связанных атомов азота [5]. Скорости реакций с метилиодидом пиридазина, пиримидина и пиразина относительно пиридина составляют 0,25,0,044 и 0,036 соответственно.


2.1. Реакции электрофильного присоединения к атому азота

Список литературы к главе 2

Глава 2

Дополнительно:


Теория инфракрасных спектров полимеров / В монографии последовательно излагается общая теория инфракрасных спектров полимеров и полимерных кристаллов и методы расчёта кривых спектрального распределения коэффициента поглощения. Предлагаемая теория является естественным распространением теории колебании малых молекул па объекты периодическойТеория инфракрасных спектров полимеров
В монографии последовательно излагается общая теория инфракрасных спектров ...
Полистирол. Физико-химические основы получения и переработки / Книга посвящена получению, переработке и применению полистирола — крупнотоннажного полимера, занимающего ведущее место в мировом производстве пластмасс. В книге впервые предпринимается попытка научного подхода к технологии получения и переработки полимеров, который базируется на методах математическПолистирол. Физико-химические основы получения и переработки
Книга посвящена получению, переработке и применению полистирола — ...
Справочное руководство по химии / Руководство включает основные теоретические положения неорганической, органической, физической и аналитической химии, электрохимии, термодинамики, сведения по техническому анализу, общей химической технологии, примеры решений типовых задач. Приведён обширный справочный материал по продуктам основногСправочное руководство по химии
Руководство включает основные теоретические положения неорганической, ...
Галоидэфиры. Способы получения, свойства, применение / В книге рассматриваются способы получения, свойства и области применения (в органическом синтезе, в промышленности полимеров, нефтеперерабатывающей промышленности, для получения некоторых лекарственных веществ, гербицидов, инсектицидов) наиболее широко известных типов галоидэфиров. В книге приведеныГалоидэфиры. Способы получения, свойства, применение
В книге рассматриваются способы получения, свойства и области применения (в ...