2.6.2. Магнийорганические производные
Реактивы Гриньяра чрезвычайно широко используются в химии карбоциклических ароматических соединений, однако прямое получение гетероциклических реактивов Гриньяра стандартным методом — взаимодействием магния с галогенопроизводными — часто затруднительно, особенно в случае гетероциклических соединений, содержащих основный атом азота [100]. Однако реакция обмена галогена в йод- и бромопроизводных гетероциклических соединений с алкильными реактивами Гриньяра (предпочтительно использование изопропил-магний-галогенидов или диизопропилмагния) позволяет получить магниевые производные широкого круга гетероциклических соединений. Получение гетероциклических реактивов Гриньяра этим способом было использовано даже в твердофазном синтезе.
Сульфоксиды пиридинового ряда также вступают в реакции обмена с образованием пиридиновых реактивов Гриньяра [101]. Реакционная способность гетероциклических реактивов Гриньяра не совсем совпадает с реакционной способностью их карбоароматических аналогов: тем не менее, они вступают в реакции со многими электрофильными реагентами, хотя в некоторых случаях необходимо наличие катализаторов (солей меди).

2.6.2. Магнийорганические производные
Список литературы к главе 2
Глава 2
- 2. Реакционная способность ароматических гетероциклических соединений
- 2.1. Реакции электрофильного присоединения к атому азота
- 2.2. Реакции электрофильного замещения при атому углерода
- 2.2.1. Механизм ароматического электрофильного замещения
- 2.2.2. Шестичленные гетероциклические соединения
- 2.2.3. Пятичленные гетероциклические соединения
- 2.3. Реакции нуклеофильного замещения при атоме углерода
- 2.3.1. Механизм реакции ароматического нуклеофильного замещения
- 2.3.2. Шестичленные гетероциклические соединения
- 2.3.3. Викариозное нуклеофильное замещение
- 2.4. Реакции радикального замещения при атоме углерода
- 2.4.1. Реакции гетероциклических соединений с нуклеофильными радикалами. Реакция Минисци
- 2.4.2. Реакции с электрофильными радикалами
- 2.5. Депротонирование атома азота
- 2.6. Металлоорганические производные
- 2.6.1. Литийорганические производные
- 2.6.1.1. Прямое литиирование (депротонирование при атоме углерода)
- 2.6.1.2. Обмен атома галогена
- 2.6.1.3. Литиирование пятичленных гетероциклических соединений
- 2.6.1.4. Литиирование шестичленных гетероциклических соединений
- 2.6.2. Магнийорганические производные
- 2.6.3. Бор-, кремний- и оловоорганические реагенты
- 2.6.3.1. Синтез
- 2.6.3.2. Реакции
- 2.6.4. Цинкорганические производные
- 2.6.5. Металлирование боковой цепи шестичленных гетероциклических соединений («латеральное металлирование»)
- 2.6.6. Металлирование боковой цепи пятичленных гетероциклических соединений
- 2.7. Реакции, катализируемые палладием
- 2.7.1. Основные процессы с участием палладийорганических соединений
- 2.7.1.1. Согласованные реакции
- 2.7.1.2. Ионные реакции
- 2.7.2. Реакции, катализируемые палладием, в химии гетероциклических соединений
- 2.7.2.1. Реакция Хека
- 2.7.2.2. Реакции сочетания
- 2.7.2.3. Реакции карбонилирования
- 2.7.2.4. Синтез бензоконденсированных гетероциклических соединений
- 2.8. Окисление и восстановление гетероциклических соединений
- 2.9. Биологические процессы в химии гетероциклических соединений
Дополнительно:
Сегнетоэлектрические твёрдые растворы на основе оксидных соединений ниобия и тантала В монографии изложены механизмы твердофазного взаимодействия при синтезе ...
Основы переработки реактопластов и резин методом литья под давлением Книга посвящена экспериментальным и теоретическим исследованиям процессов, ...
