24.2.1.2. Алкилирование по атому азота
Как и следовало ожидать от систем, содержащих четыре атома азота, N-алкилирование пуринов протекает довольно сложно, и в нем могут участвовать нейтральная молекула или N-анион. Пурин реагирует с метилиодидом с образованием соли 7,9-диметилпуриния [5].

В нейтральных условиях аденин алкилируется по атому азота N(3), а в присутствии основания происходит 7/9-замещение. Производные аденозина, с одной стороны, обычно алкилируются по положению 1, что, вероятно, обусловлено тем, что атаке по положению N(3) мешает расположенный в пери-положении заместитель — 9-рибоза. С другой стороны, атака по атому N(3) все же может происходить при внутримолекулярной кватернизации, которая представляет собой основной побочный процесс при замещении атома галогена в положении 5′.
Эффективный метод алкилирования 6-аминогрупп заключается в перегруппировке соли 1 — алкиладенозиния; процесс идёт по ANRORC-механизму — перегруппировка Димрота [6] [7].

Другая перегруппировка по реакции Димрота позволяет ввести изотопную метку в положение 1, и в качестве исходного соединения используют аденозин, меченный по атому азота аминогруппы [8].

Алкилирование кислородсодержащих пуринов, например гипоксантина, в щелочной среде идёт как по амидному атому азота, так и по атому азота пятичленного цикла, и поэтому селективность процесса становится весьма проблематичной. В нейтральных условиях ксантин превращается в 7,9-диалкилиро-ванные четвертичные соли. На примере алкилирования 6-хлорпурина можно проследить зависимость направления реакции от условий её проведения: в растворе основания замещается как положение 7, так и 9 [9], в то время как реакция с карбокатионом селективно идёт атому азота N(9) [10].

Для аденинов очень удобно использовать 9-трет-бугилдиметилсилилокси-метильную защитную группу, поскольку она способствует хорошей растворимости в органических растворителях. Введение этой группы происходит постадийно путём первоначального превращения аденина в 9-гидроксиметильное производное при взаимодействии с формальдегидом и основанием и последующего О-силилирования [11].
Соотношение продуктов N(9)- и N(7)-алкилирования также зависит от размера заместителя в положении 6: при наличии объёмного заместителя в положении 6 алкилирование идёт преимущественно по положению 9, а не 7 [12]. Соотношение это также зависит от природы алкилирующего агента: так, при использовании акцептора Михаэля, например метилакрилата, алкилирование обратимо и концентрация термодинамического продукта может возрастать [13]. Региоспецифичное 7-алкилирование может быть проведено кватернизацией 9-рибозида с последующим гидролитическим удалением углеводного остатка, как показано на схеме [14]. Алкилирование по атому азота N(7) в нуклеиновых кислотах лежит в основе механизма мутагенеза/канцерогенеза при действии некоторых природных токсинов, таких, как афлатоксин [15].

В условиях, когда селективность N(7)/N(9) мала, алкилирование в положение 9 можно направить путём введения объёмной защитной группы в положение 6 [16].

Возвращаясь опять к вопросу о региоселекгивности, следует упомянуть также процесс рибозилирования пуринов, в котором возможно образование эпимерных соединений при связывании с атомом 1′ рибозы, и этот процесс часто более трудно контролировать. Многочисленные исследования показали, что различные условия оказываются эффективными в особых случаях, но таких условий, которые были бы универсальными, обнаружить не удалось [17]. В таких реакциях алкилирования обычно используют взаимодействие ацилированных или галогеносодержащих рибозидов с ртуть- [18], кремний- [17] или натрийпроизводными [19] пурина, прич`м иногда может быть достигнуто стереоселективное замещение атома галогена.

Другие методы, позволяющие контролировать стереохимию реакции, включают использование изопропилиденовой защитной группы, экранирующей остаток сахара [20], или анхимерного содействия бензоатной группы в положении 2′ [21].
Ферментативный катализ был использован для рибозилирования пуриновых и родственных структур при реакции с 7-алкилированными нуклеозидами [22].

Глава 24
- 24. Пурины: реакции и методы синтеза
- 24.1. Нуклеиновые кислоты, нуклеозиды и нуклеотиды
- 24.2. Реакции с электрофильными реагентами
- 24.2.1. Присоединение по атому азота
- 24.2.1.1. Протонирование
- 24.2.1.2. Алкилирование по атому азота
- 24.2.1.3. Ацилирование по атому азота
- 24.2.1.4. Окисление по атому азота
- 24.2.2. Замещение по атому углерода
- 24.2.2.1. Галогенирование
- 24.2.2.2. Нитрование
- 24.2.2.3. Реакции сочетания с солями диазония
- 24.3. Реакции со свободными радикалами
- 24.4. Реакции с окислителями
- 24.5. Реакции с восстановителями
- 24.6. Реакции с нуклеофильными реагентами
- 24.7. Реакции с основаниями
- 24.7.1. Депротонирование N-водорода
- 24.7.2. Депротонирование С-водорода
- 24.8. Реакции N-металлированных пуринов
- 24.9. Реакции C-металлированных пуринов
- 24.9.1. Литийорганические производные
- 24.9.2. Реакции, катализируемые палладием
- 24.10. Окси- и аминопурины
- 24.10.1. Оксипурины
- 24.10.1.1. Алкилирование
- 24.10.1.2. Ацилирование
- 24.10.1.3. Замещение на атом хлора
- 24.10.1.4. Замещение на атом серы
- 24.10.2. Аминопурины
- 24.10.2.1. Алкилирование
- 24.10.2.2. Ацилирование
- 24.10.2.3. Диазотирование
- 24.10.3. Тиопурины
- 24.11. Алкилпурины
- 24.12. Пуринкарбоновые кислоты
- 24.13. Синтезы пуринов
- 24.13.1. Синтез кольца
- 24.13.1.1. Из 4,5-диаминопиримидинов
- 24.13.1.2. Из 5-аминоимидазол-4-карбоксамида или 5-аминоимидазол-4-карбонитрила
- 24.13.1.3. Реакцией циклоприсоединения
- 24.13.1.4. Синтезы «в одной колбе»
- 24.13.2. Примеры синтезов некоторых важных пуринов
- 24.13.2.1. Аристеромицин
- 24.13.2.2. Аденозин
- 24.12.2.3. Силденафил (Виагра)
Дополнительно:
В работе описывается использование квантовомеханических методов (вариационного, ...
Новые методы препаративной органической химии Москва, 1950 год. Издательство иностранной литературы. Издательский переплёт. ...
Книга является учебным пособием для студентов по специальному курсу химии ...
Биографии великих химиков В книгу, написанную коллективом авторов из ГДР, включены биографические очерки о ...