5.13.2. Присоединение металлоорганических реагентов
Металлоорганические реагенты очень легко присоединяются к N-алкил-, N-арил- и, что имеет особенно важное синтетическое значение, к N-ацилпиридиниевым солям. В простейших случаях такое присоединение проходит по α-положению и образующиеся 2-замещённые-1,2-дигидропиридины при соблюдении определённых мер предосторожности можно выделить, спектрально идентифицировать или, что более важно в синтетическом плане, легко окислить в 2-замещённые пиридиниевые соли [197].

Большое синтетическое значение имеет приём, основанный на предварительном генерировании in situ N-ацилпиридиниевого катиона, затем последовательном превращении его в дигидропиридин, дальнейшей модификации в случае необходимости и удалении N-ацильного заместителя с образованием замещённого пиридина. Следует отметить различие в поведении N-ацилпиридиниевых и N-алкоксикарбонилпиридиниевых солей, реакции первых с такими нуклеофильными реагентами, как спирты и амины (разд. 5.1.1.7.), проходят с участием карбонильной группы.
Обычно присоединение металлоорганических реагентов к N-алкокси- или N-арилоксикарбонилпиридиниевым солям [192] проходит одновременно по положениям 2 и 4 [198], а селективное присоединение по положению 4 возможно при использовании медьорганических соединений [199]. Индол в виде нейтральной молекулы реагирует с хлоридом N-бензоилпиридиния по положению 4 [200], в то время как индолил-анион присоединяется к 1-метилпиридиниевым солям, содержащим ацильную группу в положении 3, либо по атому C(6), либо по атому C(4) в зависимости от природы используемого растворителя [201]. Высокая селективность присоединения по положению 2 обнаружена при использовании фенильных [202], алкенильных и алкинильных [203] металлоорганических реагентов, в том числе этоксикарбонилметил- [204] и алкинилсодержащих [205] оловоорганических соединений.
Дигидропиридины, получаемые описанным выше способом, можно использовать для введения заместителя в β-положение в результате ацилирования енамида [150], или в α-положение через предварительное образование 2-литийорганического производного; каждый из этих двух процессов иллюстрируется ниже [150]:

Силилирование пиридина по атому азота трет-бутилдиметилсилитрифлатом приводит к образованию соли, которая вследствие большого объёма заместителя реагирует с реактивами Гриньяра исключительно по положению 4 [206]. Присоединение силиловых эфиров енолов к пиридину, катализируемое монтмориллонитом, также приводит к образованию 1-триметилсилил-1,4-дигидро-пиридинов с ацилалкильным заместителем в положении 4 [207].

Заместители в положении 4 способствуют атаке металлоорганических соединений по α-положению [208] [209]; таким образом, при использовании субстратов, содержащих удаляемые блокирующие группы в положении 4, например триметилстаннильную, можно получать 2-замёщенные производные пиридина, как показано ниже [210]:

Использование хиральных хлорформиатов, например, полученных из транс-(α-кумил)циклогексанола, позволяет провести диастереоселекгивное присоединение металлоорганических реагентов к 4-метоксипиридину. Введение триизопропилсилильной группы в положение 3 существенно повышает диастереоселективность присоединения. Полученный по приведённой ниже схеме многофункциональный хиральный пиперидин используется в асимметрическом синтезе природных соединений [211].

Присоединение некоторых нуклеофильных реагентов к N-фторпиридиниевым солям сопровождается самопроизвольным элиминированием фторид-иона, что приводит к 2-замещенным пиридинам и исключает необходимость заключительной стадии ароматизации. Основной недостаток такого метода состоит в том, что для получения N-фторпиридиниевых солей необходимо использовать молекулярный фтор и, кроме того, при реакции с некоторыми карбанионами выходы продуктов присоединения низкие, поскольку параллельно проходит конкурирующая реакция C-фторирования. Тем не менее использование в таких процессах силиловых эфиров енолов и стабилизированных гетеронуклеофильных реагентов (фенолятов, азидов) достаточно эфффективно. Присоединение к N-фторпиридиниевым солям идёт главным образом по α-положению [212].

Аналогичным образом можно получить пиридиновые фосфониевые соли и фосфонаты взаимодействием соединений трёхвалентного фосфора с легко доступными N-трифторметансульфонилпиридиниевыми катионами; в том случае, если уходящей группой служит трифторметансульфинатная, атака нуклеофилом проходит обычно по положению 4 [213].

Глава 5
- 5. Пиридины: реакции и методы синтеза
- 5.1. Реакции с электрофильными реагентами
- 5.1.1. Присоединение к атому азота
- 5.1.1.1. Протонирование атома азота
- 5.1.1.2. Нитрование по атому азота
- 5.1.1.3. Аминирование по атому азота
- 5.1.1.4. Окисление атома азота
- 5.1.1.5. Сульфирование по атому азота
- 5.1.1.6. Галогенирование по атому азота
- 5.1.1.7. Ацилирование по атому азота
- 5.1.1.8. Алкилирование по атому азота
- 5.1.1.9. Реакции комплексообразования
- 5.1.2. Реакции замещения при атоме углерода
- 5.1.2.1. Протонный обмен
- 5.1.2.2. Нитрование
- 5.1.2.3. Сульфирование
- 5.1.2.4. Галогенирование
- 5.1.2.5. Ацетоксимеркурирование
- 5.1.2.6. Реакции замещения в пиридинах, содержащих активированный атом азота и кислородсодержащие заместители
- 5.2. Реакции с окислителями
- 5.3. Реакции с нуклеофильными реагентами
- 5.3.1. Нуклеофильное замещение атома водорода
- 5.3.1.1. Алкилирование и арилирование
- 5.3.1.2. Аминирование
- 5.3.1.3. Гидроксилирование
- 5.3.2. Нуклеофильное замещение хорошо уходящих групп
- 5.4. Реакции с основаниями
- 5.4.1. Депротонирование при атоме углерода
- 5.5. Реакции c-металлированных пиридинов
- 5.5.1. Литий- и магнийорганические производные
- 5.5.2. Реакции, катализируемые палладием
- 5.6. Реакции со свободными радикалами, реакции пиридил-радикалов
- 5.6.1. Галогенирование
- 5.6.2. Реакции с углеродными радикалами
- 5.6.3. Димеризация
- 5.6.4. Пиридил-радикалы
- 5.7. Реакции с восстановителями
- 5.8. Электроциклические реакции (основного состояния)
- 5.9. Фотохимические реакции
- 5.10. Окси- и аминопиридины
- 5.10.2. Реакции пиридонов
- 5.10.2.1. Электрофильное присоединение и замещение
- 5.10.2.2. Депротонирование и реакции солей
- 5.10.2.3. Замещение атома кислорода
- 5.10.2.4. Тио-2-пиридоны
- 5.10.3. Реакции аминопиридинов
- 5.10.3.1. Электрофильное присоединение и замещение
- 5.10.3.2. Реакции аминогруппы
- 5.11. Алкилпиридины
- 5.12. Пиридиновые альдегиды, кетоны, карбоновые кислоты и их эфиры
- 5.13. Четвертичные пиридиниевые соли
- 5.13.1. Восстановление и окисление
- 5.13.2. Присоединение металлоорганических реагентов
- 5.13.3. Другие реакции нуклеофильного присоединения
- 5.13.4. Нуклеофильное присоединение с последующим раскрытием цикла
- 5.13.5. Реакции циклизации с участием α-положений или α-заместителей
- 5.13.6. N-Дезалкилирование
- 5.14. N-оксиды пиридина
- 5.14.1. Электрофильное присоединение и замещение
- 5.14.2. Нуклеофильное присоединение и замещение
- 5.14.3. Перегруппировки
- 5.15. Синтез пиридинов
- 5.15.1. Синтез кольца
- 5.15.1.1. Из аммиака и 1,5-дикарбонильных соединений
- 5.15.1.2. Из альдегида, двух молекул 1,3-дикарбонильного соединения и аммиака
- 5.15.1.2.1. Синтез Ганча
- 5.15.1.3. Из 1,3-Дикарбонильных соединений и 3-аминоенонов или 3-аминонитрилов
- 5.15.1.3.1. Синтез Гуарески
- 5.15.1.4. С использованием реакций циклоприсоединения
- 5.15.1.5. С использованием термической электроциклизации
- 5.15.1.6. Из фуранов
- 5.15.1.7. Прочие методы
- 5.15.2. Примеры синтезов некоторых важных производных пиридина
- 5.15.2.1. Фузариновая кислота
- 5.15.2.2. Пиридоксин
- 5.15.2.3. 2-Метокси-4-метил-5-нитропиридин
- 5.15.2.4. Немертеллин
Дополнительно:
Откровенная наука. Беседы с корифеями биохимии и медицинской химии Книга И. Харгиттаи состоит из 36 бесед с выдающимися учёными XX века, работавшими в ...
Димеризация и диспропорционирование олефинов Книга является первой в мировой литературе монографией, посвящённой димеризации, ...
Химия и технология полимерных плёнок Книга посвящена химии и технологии производства плёночных материалов из ...
Справочник по растворимости. В 2 томах (комплект из 4 книг) Первый том «Справочника по растворимости» содержит систематизированную сводку ...