5.5.1. Литий- и магнийорганические производные
Литийорганические производные пиридинов легко получаются и их свойства типичны для металлоорганических соединений [50] [51] [52]: так, например, 3-бром-пиридин вступает в реакцию обмена металл — галоген при действии н-бутиллития в эфире при —78 °C. При использовании в качестве растворителя более основного тетрагидрофурана нуклеофильность алкиллитиевых реагентов настолько велика, что происходит лишь присоединение металлоорганического соединения к пиридину.
Реакция обмена металл — галоген, тем не менее, может быть проведена и в тетрагидрофуране, но при более низких температурах [53]. Литийорганические производные пиридина можно получить из галогенопиридинов (в том числе и хлорпиридинов) также в результате обмена металл — галоген с использованием нафталенида лития [54]. 2-Бром-6-метилпиридин может быть превращён с соответствующее литиевое производное без депротонирования метальной группы [55].

Прямое региоселективное металлирование по α-положению пиридина, 2-метоксипиридина и метилтиопиридина можно осуществить, используя сложную металлирующую систему, состоящую из бутиллития и литиевой соли 2-диметиламиноэтанола. Процесс с участием такой системы возможно более сложный, чем простое депротонирование и, вероятно, включает стадию образования радикал-анионного интермедиата [56].

Обмен металл — галоген в 2,5-дибромпиридине приводит с высоким выходом исключительно к 2-бром-5-литийпиридину в результате термодинамически контролируемого процесса [57]. Можно предположить, что 2-пиридил-анион дестабилизирован электростатическим отталкиванием анионного центра и неподелённой пары электронов [46]; тот же самый фактор, вероятно, определяет большую трудность образования 2,3-дидегидропиридина (см. разд. 5.3.2.). Приведённая ниже схема иллюстрирует использован «амида Вайнреба» муравьиной кислоты для введения формильной группы в пиридиновое кольцо [58].
Амиды Вайнреба (Weinreb amides) — N-метил-N-метоксиамиды карбоновых кислот — широко используются в органическом синтезе в ряде полезных превращений: так, например, они восстанавливаются алюмогидридом лития в соответствующие альдегиды и реагируют с литий- и магнийорганическими соединениями с образованием кетонов.

Монолитиирование 2,6-дибромпиридина удаётся осуществить при «обратном порядке смешения реагентов», то есть при прибавлении дибромпиридина к н-бутиллитию. Другой способ получения монолитиевого производного заключается в использовании дихлорметана в качестве растворителя при литиировании; вероятно, это единственный пример использования дихлорметана в качестве растворителя при литиировании [59]. Обычный вариант литиирования 2,6-дибромпиридина, но при — 90 °C, и последующее взаимодействие с объёмными кремнийсодержащим электрофилом приводит исключительно к продукту монозамещения [60].

Галогенопиридины, особенно хлор- и, в большей степени, фторпроизводные, способны литиироваться по положению, соседнему с атомом галогена, через предварительное депротонирование. Такие превращения возможны, хотя и редки, даже для бромпиридинов [61]. Лучшие результаты при таком литиировании достигаются при использовании диизопропиламида лития в качестве литиирующего агента. 3-Галогенопиридины литиируются этим методом по положению 4, а 2- и 4-галогенопроизводные — исключительно по β-положениям [62]. При литиировании 3-метоксипиридина с использованием в качестве литиирующего агента мезитиллития образуется 2-литийпроизводное [63]. 3-Метоксиметокси-пиридин [64], 3-диизопропиламинокарбонил- [65] и 3-трет-бутилкарбонила-минопиридины [66] литиируются по положению 4.
Литиирование производных пиридина, содержащих диметилоксазолиновую ориентирующую группу, требует использования 2,2,6,6-тетраметилпиперидида лития, в противном случае наблюдается присоединение металлоорганических соединений по положению 4. Сочетание этой реакции с окислением образующегося дигидропиридина кислородом воздуха представляет собой эффективный метод синтеза 4-алкилированных пиридинов [67]. Прямое получение магнийорганических производных пиридина требует, как показано ниже, более высокой температуры [68].

Литиирование 2- и 4-трет-бутилоксикарбониламинопиридинов проходит только по положению 3. Этот процесс находит применение в синтезе азаиндолов; предварительно полученное на первой стадии 3-литийорганическое производное используют для введения метильной группы в положение 3 пиридинового цикла, дальнейшее литиирование боковой цепи (разд. 5.11.) обеспечивает подход к азаиндолам (разд. 17.17.7.). Приведённая ниже схема иллюстрирует синтез 5-азаиндола (пирроло[3,2-с]пиридина) [69]:

Литиированные пиридины реагируют обычным образом с различными электрофильными реагентами; так, например, их можно ацилировать третичными амидами [70]:

Галогенные заместители, использующиеся для прямого литиирования пиридинового цикла, в дальнейшем могут быть замещены нуклеофильными реагентами [71].

Литиирование в результате обмена металл — галоген проходит селективно при наличии в молекуле ориентирующей группы [72]. В том случае, если в молекуле присутствует одновременно две ориентирующие группы, которые расположены в положениях 1,3, литиирование проходит селективно по атому углерода, расположенному между этими двумя группами [73].

Атомы брома и йода в качестве заместителей в пиридиновом цикле также способствуют прямому металлированию, однако в этом случае оно сопровождается изомеризациями (аналогичными описанным в разд. 14.5.1.). Как показано на приведённой ниже схеме, изомеризация приводит к образованию более стабильного литиевого производного, то есть такого, в котором отрицательно заряженный атом углерода расположен между атомами с галогенными заместителями [74].

При определённых условия можно провести селективное 2-литиирование N-оксидов пиридина. Один из ярких примеров — литиирование по положению 6 N-оксида 2-пивалоиламинопиридина, литиирование в этом случае проходит по положению, соседнему с группой N-O, а не с заместителем, ориентирующим в орто-положениях. Региоселективное С(2)-литиирование 3,4-диметоксипиридина также свидетельствует о влиянии N-оксидной группы [75].
Реактивы Гриньяра легко получаются в результате обмена галоген — металл из бром- и иодпиридинов; в качестве металлирующего агента используются изопропильные реактивы Гриньяра [76]. Следует отметить, что обмен магний — галоген в 2,5-дибромпиридине протекает аналогично обмену литий — галоген, то есть по положению 5; из других дибромпиридинов в результате обмена также образуются мономагнийорганические соединения. Получение пиридил-магний-галогенидов при низких температурах возможно даже в присутствии таких групп, как сложноэфирная и нитрильная. Хотя пиридил-магний-галогениды не столь удобны в синтезе различных производных пиридина, как соответствующие литиевые производные, однако в некоторых случаях они имеют очевидные преимущества.

Глава 5
- 5. Пиридины: реакции и методы синтеза
- 5.1. Реакции с электрофильными реагентами
- 5.1.1. Присоединение к атому азота
- 5.1.1.1. Протонирование атома азота
- 5.1.1.2. Нитрование по атому азота
- 5.1.1.3. Аминирование по атому азота
- 5.1.1.4. Окисление атома азота
- 5.1.1.5. Сульфирование по атому азота
- 5.1.1.6. Галогенирование по атому азота
- 5.1.1.7. Ацилирование по атому азота
- 5.1.1.8. Алкилирование по атому азота
- 5.1.1.9. Реакции комплексообразования
- 5.1.2. Реакции замещения при атоме углерода
- 5.1.2.1. Протонный обмен
- 5.1.2.2. Нитрование
- 5.1.2.3. Сульфирование
- 5.1.2.4. Галогенирование
- 5.1.2.5. Ацетоксимеркурирование
- 5.1.2.6. Реакции замещения в пиридинах, содержащих активированный атом азота и кислородсодержащие заместители
- 5.2. Реакции с окислителями
- 5.3. Реакции с нуклеофильными реагентами
- 5.3.1. Нуклеофильное замещение атома водорода
- 5.3.1.1. Алкилирование и арилирование
- 5.3.1.2. Аминирование
- 5.3.1.3. Гидроксилирование
- 5.3.2. Нуклеофильное замещение хорошо уходящих групп
- 5.4. Реакции с основаниями
- 5.4.1. Депротонирование при атоме углерода
- 5.5. Реакции c-металлированных пиридинов
- 5.5.1. Литий- и магнийорганические производные
- 5.5.2. Реакции, катализируемые палладием
- 5.6. Реакции со свободными радикалами, реакции пиридил-радикалов
- 5.6.1. Галогенирование
- 5.6.2. Реакции с углеродными радикалами
- 5.6.3. Димеризация
- 5.6.4. Пиридил-радикалы
- 5.7. Реакции с восстановителями
- 5.8. Электроциклические реакции (основного состояния)
- 5.9. Фотохимические реакции
- 5.10. Окси- и аминопиридины
- 5.10.2. Реакции пиридонов
- 5.10.2.1. Электрофильное присоединение и замещение
- 5.10.2.2. Депротонирование и реакции солей
- 5.10.2.3. Замещение атома кислорода
- 5.10.2.4. Тио-2-пиридоны
- 5.10.3. Реакции аминопиридинов
- 5.10.3.1. Электрофильное присоединение и замещение
- 5.10.3.2. Реакции аминогруппы
- 5.11. Алкилпиридины
- 5.12. Пиридиновые альдегиды, кетоны, карбоновые кислоты и их эфиры
- 5.13. Четвертичные пиридиниевые соли
- 5.13.1. Восстановление и окисление
- 5.13.2. Присоединение металлоорганических реагентов
- 5.13.3. Другие реакции нуклеофильного присоединения
- 5.13.4. Нуклеофильное присоединение с последующим раскрытием цикла
- 5.13.5. Реакции циклизации с участием α-положений или α-заместителей
- 5.13.6. N-Дезалкилирование
- 5.14. N-оксиды пиридина
- 5.14.1. Электрофильное присоединение и замещение
- 5.14.2. Нуклеофильное присоединение и замещение
- 5.14.3. Перегруппировки
- 5.15. Синтез пиридинов
- 5.15.1. Синтез кольца
- 5.15.1.1. Из аммиака и 1,5-дикарбонильных соединений
- 5.15.1.2. Из альдегида, двух молекул 1,3-дикарбонильного соединения и аммиака
- 5.15.1.2.1. Синтез Ганча
- 5.15.1.3. Из 1,3-Дикарбонильных соединений и 3-аминоенонов или 3-аминонитрилов
- 5.15.1.3.1. Синтез Гуарески
- 5.15.1.4. С использованием реакций циклоприсоединения
- 5.15.1.5. С использованием термической электроциклизации
- 5.15.1.6. Из фуранов
- 5.15.1.7. Прочие методы
- 5.15.2. Примеры синтезов некоторых важных производных пиридина
- 5.15.2.1. Фузариновая кислота
- 5.15.2.2. Пиридоксин
- 5.15.2.3. 2-Метокси-4-метил-5-нитропиридин
- 5.15.2.4. Немертеллин
Дополнительно:
Адольф Кетлэ. Его жизнь и научная деятельность Воспроизведено в оригинальной авторской орфографии издания 1894 года ...
Новые методы препаративной органической химии Москва, 1950 год. Издательство иностранной литературы. Издательский переплёт. ...
Книга представляет собой материалы XVII Международного конгресса по теоретической ...
Основные начала неорганической химии Воспроизведено в оригинальной авторской орфографии издания 1912 года ...