Литий- и магнийорганические производные

5.5.1. Литий- и магнийорганические производные

Литийорганические производные пиридинов легко получаются и их свойства типичны для металлоорганических соединений [50] [51] [52]: так, например, 3-бром-пиридин вступает в реакцию обмена металл — галоген при действии н-бутиллития в эфире при —78 °C. При использовании в качестве растворителя более основного тетрагидрофурана нуклеофильность алкиллитиевых реагентов настолько велика, что происходит лишь присоединение металлоорганического соединения к пиридину.

Реакция обмена металл — галоген, тем не менее, может быть проведена и в тетрагидрофуране, но при более низких температурах [53]. Литийорганические производные пиридина можно получить из галогенопиридинов (в том числе и хлорпиридинов) также в результате обмена металл — галоген с использованием нафталенида лития [54]. 2-Бром-6-метилпиридин может быть превращён с соответствующее литиевое производное без депротонирования метальной группы [55].

Рисунок 1. Раздел 5.5.1. Литий- и магнийорганические производные

Прямое региоселективное металлирование по α-положению пиридина, 2-метоксипиридина и метилтиопиридина можно осуществить, используя сложную металлирующую систему, состоящую из бутиллития и литиевой соли 2-диметиламиноэтанола. Процесс с участием такой системы возможно более сложный, чем простое депротонирование и, вероятно, включает стадию образования радикал-анионного интермедиата [56].

Рисунок 2. Раздел 5.5.1. Литий- и магнийорганические производные

Обмен металл — галоген в 2,5-дибромпиридине приводит с высоким выходом исключительно к 2-бром-5-литийпиридину в результате термодинамически контролируемого процесса [57]. Можно предположить, что 2-пиридил-анион дестабилизирован электростатическим отталкиванием анионного центра и неподелённой пары электронов [46]; тот же самый фактор, вероятно, определяет большую трудность образования 2,3-дидегидропиридина (см. разд. 5.3.2.). Приведённая ниже схема иллюстрирует использован «амида Вайнреба» муравьиной кислоты для введения формильной группы в пиридиновое кольцо [58].

Амиды Вайнреба (Weinreb amides) — N-метил-N-метоксиамиды карбоновых кислот — широко используются в органическом синтезе в ряде полезных превращений: так, например, они восстанавливаются алюмогидридом лития в соответствующие альдегиды и реагируют с литий- и магнийорганическими соединениями с образованием кетонов.

Рисунок 3. Раздел 5.5.1. Литий- и магнийорганические производные

Монолитиирование 2,6-дибромпиридина удаётся осуществить при «обратном порядке смешения реагентов», то есть при прибавлении дибромпиридина к н-бутиллитию. Другой способ получения монолитиевого производного заключается в использовании дихлорметана в качестве растворителя при литиировании; вероятно, это единственный пример использования дихлорметана в качестве растворителя при литиировании [59]. Обычный вариант литиирования 2,6-дибромпиридина, но при — 90 °C, и последующее взаимодействие с объёмными кремнийсодержащим электрофилом приводит исключительно к продукту монозамещения [60].

Рисунок 4. Раздел 5.5.1. Литий- и магнийорганические производные

Галогенопиридины, особенно хлор- и, в большей степени, фторпроизводные, способны литиироваться по положению, соседнему с атомом галогена, через предварительное депротонирование. Такие превращения возможны, хотя и редки, даже для бромпиридинов [61]. Лучшие результаты при таком литиировании достигаются при использовании диизопропиламида лития в качестве литиирующего агента. 3-Галогенопиридины литиируются этим методом по положению 4, а 2- и 4-галогенопроизводные — исключительно по β-положениям [62]. При литиировании 3-метоксипиридина с использованием в качестве литиирующего агента мезитиллития образуется 2-литийпроизводное [63]. 3-Метоксиметокси-пиридин [64], 3-диизопропиламинокарбонил- [65] и 3-трет-бутилкарбонила-минопиридины [66] литиируются по положению 4.

Литиирование производных пиридина, содержащих диметилоксазолиновую ориентирующую группу, требует использования 2,2,6,6-тетраметилпиперидида лития, в противном случае наблюдается присоединение металлоорганических соединений по положению 4. Сочетание этой реакции с окислением образующегося дигидропиридина кислородом воздуха представляет собой эффективный метод синтеза 4-алкилированных пиридинов [67]. Прямое получение магнийорганических производных пиридина требует, как показано ниже, более высокой температуры [68].

Рисунок 5. Раздел 5.5.1. Литий- и магнийорганические производные

Литиирование 2- и 4-трет-бутилоксикарбониламинопиридинов проходит только по положению 3. Этот процесс находит применение в синтезе азаиндолов; предварительно полученное на первой стадии 3-литийорганическое производное используют для введения метильной группы в положение 3 пиридинового цикла, дальнейшее литиирование боковой цепи (разд. 5.11.) обеспечивает подход к азаиндолам (разд. 17.17.7.). Приведённая ниже схема иллюстрирует синтез 5-азаиндола (пирроло[3,2-с]пиридина) [69]:

Рисунок 6. Раздел 5.5.1. Литий- и магнийорганические производные

Литиированные пиридины реагируют обычным образом с различными электрофильными реагентами; так, например, их можно ацилировать третичными амидами [70]:

Рисунок 7. Раздел 5.5.1. Литий- и магнийорганические производные

Галогенные заместители, использующиеся для прямого литиирования пиридинового цикла, в дальнейшем могут быть замещены нуклеофильными реагентами [71].

Рисунок 8. Раздел 5.5.1. Литий- и магнийорганические производные

Литиирование в результате обмена металл — галоген проходит селективно при наличии в молекуле ориентирующей группы [72]. В том случае, если в молекуле присутствует одновременно две ориентирующие группы, которые расположены в положениях 1,3, литиирование проходит селективно по атому углерода, расположенному между этими двумя группами [73].

Рисунок 9. Раздел 5.5.1. Литий- и магнийорганические производные

Атомы брома и йода в качестве заместителей в пиридиновом цикле также способствуют прямому металлированию, однако в этом случае оно сопровождается изомеризациями (аналогичными описанным в разд. 14.5.1.). Как показано на приведённой ниже схеме, изомеризация приводит к образованию более стабильного литиевого производного, то есть такого, в котором отрицательно заряженный атом углерода расположен между атомами с галогенными заместителями [74].

Рисунок 10. Раздел 5.5.1. Литий- и магнийорганические производные

При определённых условия можно провести селективное 2-литиирование N-оксидов пиридина. Один из ярких примеров — литиирование по положению 6 N-оксида 2-пивалоиламинопиридина, литиирование в этом случае проходит по положению, соседнему с группой N-O, а не с заместителем, ориентирующим в орто-положениях. Региоселективное С(2)-литиирование 3,4-диметоксипиридина также свидетельствует о влиянии N-оксидной группы [75].

Реактивы Гриньяра легко получаются в результате обмена галоген — металл из бром- и иодпиридинов; в качестве металлирующего агента используются изопропильные реактивы Гриньяра [76]. Следует отметить, что обмен магний — галоген в 2,5-дибромпиридине протекает аналогично обмену литий — галоген, то есть по положению 5; из других дибромпиридинов в результате обмена также образуются мономагнийорганические соединения. Получение пиридил-магний-галогенидов при низких температурах возможно даже в присутствии таких групп, как сложноэфирная и нитрильная. Хотя пиридил-магний-галогениды не столь удобны в синтезе различных производных пиридина, как соответствующие литиевые производные, однако в некоторых случаях они имеют очевидные преимущества.

Рисунок 11. Раздел 5.5.1. Литий- и магнийорганические производные


5.5.1. Литий- и магнийорганические производные

Список литературы к главе 5

Упражнения к главе 5

Глава 5

Дополнительно:


Пластмассы со специальными свойствами / Сборник научных трудов содержит статьи, посвящённые современным проблемам химии полимеров, созданию новых полимерных материалов со специальными свойствами, новым направлениям переработки пластмасс. Публикуемые материалы представлены на международную научную конференцию «Пластмассы со специальными свПластмассы со специальными свойствами
Сборник научных трудов содержит статьи, посвящённые современным проблемам химии ...
Мир химии / Успехи современной химии позволили синтезировать новые, не существовавшие в Природе удивительные материалы, о которых увлечённо рассказывает доктор технических наук, профессор М. М. Колтун. Знакомясь с проблемами химии наших дней, читатель узнает и то, какими путями шла наука от первых озарений и доМир химии
Успехи современной химии позволили синтезировать новые, не существовавшие в ...
Практическое руководство по физико-химии волокнообразующих полимеров / Настоящая книга является оригинальным изложением основ физико-химии волокнообразующих полимеров на многочисленных примерах и задачах, часто встречающихся в практике научных и технологических работ. В книге изложены общие принципы современной теории структурообразования волокнообразующих полимеров, пПрактическое руководство по физико-химии волокнообразующих полимеров
Настоящая книга является оригинальным изложением основ физико-химии ...