Литий- и магнийорганические производные

5.5.1. Литий- и магнийорганические производные

Литийорганические производные пиридинов легко получаются и их свойства типичны для металлоорганических соединений [50] [51] [52]: так, например, 3-бром-пиридин вступает в реакцию обмена металл — галоген при действии н-бутиллития в эфире при —78 °C. При использовании в качестве растворителя более основного тетрагидрофурана нуклеофильность алкиллитиевых реагентов настолько велика, что происходит лишь присоединение металлоорганического соединения к пиридину.

Реакция обмена металл — галоген, тем не менее, может быть проведена и в тетрагидрофуране, но при более низких температурах [53]. Литийорганические производные пиридина можно получить из галогенопиридинов (в том числе и хлорпиридинов) также в результате обмена металл — галоген с использованием нафталенида лития [54]. 2-Бром-6-метилпиридин может быть превращён с соответствующее литиевое производное без депротонирования метальной группы [55].

Рисунок 1. Раздел 5.5.1. Литий- и магнийорганические производные

Прямое региоселективное металлирование по α-положению пиридина, 2-метоксипиридина и метилтиопиридина можно осуществить, используя сложную металлирующую систему, состоящую из бутиллития и литиевой соли 2-диметиламиноэтанола. Процесс с участием такой системы возможно более сложный, чем простое депротонирование и, вероятно, включает стадию образования радикал-анионного интермедиата [56].

Рисунок 2. Раздел 5.5.1. Литий- и магнийорганические производные

Обмен металл — галоген в 2,5-дибромпиридине приводит с высоким выходом исключительно к 2-бром-5-литийпиридину в результате термодинамически контролируемого процесса [57]. Можно предположить, что 2-пиридил-анион дестабилизирован электростатическим отталкиванием анионного центра и неподелённой пары электронов [46]; тот же самый фактор, вероятно, определяет большую трудность образования 2,3-дидегидропиридина (см. разд. 5.3.2.). Приведённая ниже схема иллюстрирует использован «амида Вайнреба» муравьиной кислоты для введения формильной группы в пиридиновое кольцо [58].

Амиды Вайнреба (Weinreb amides) — N-метил-N-метоксиамиды карбоновых кислот — широко используются в органическом синтезе в ряде полезных превращений: так, например, они восстанавливаются алюмогидридом лития в соответствующие альдегиды и реагируют с литий- и магнийорганическими соединениями с образованием кетонов.

Рисунок 3. Раздел 5.5.1. Литий- и магнийорганические производные

Монолитиирование 2,6-дибромпиридина удаётся осуществить при «обратном порядке смешения реагентов», то есть при прибавлении дибромпиридина к н-бутиллитию. Другой способ получения монолитиевого производного заключается в использовании дихлорметана в качестве растворителя при литиировании; вероятно, это единственный пример использования дихлорметана в качестве растворителя при литиировании [59]. Обычный вариант литиирования 2,6-дибромпиридина, но при — 90 °C, и последующее взаимодействие с объёмными кремнийсодержащим электрофилом приводит исключительно к продукту монозамещения [60].

Рисунок 4. Раздел 5.5.1. Литий- и магнийорганические производные

Галогенопиридины, особенно хлор- и, в большей степени, фторпроизводные, способны литиироваться по положению, соседнему с атомом галогена, через предварительное депротонирование. Такие превращения возможны, хотя и редки, даже для бромпиридинов [61]. Лучшие результаты при таком литиировании достигаются при использовании диизопропиламида лития в качестве литиирующего агента. 3-Галогенопиридины литиируются этим методом по положению 4, а 2- и 4-галогенопроизводные — исключительно по β-положениям [62]. При литиировании 3-метоксипиридина с использованием в качестве литиирующего агента мезитиллития образуется 2-литийпроизводное [63]. 3-Метоксиметокси-пиридин [64], 3-диизопропиламинокарбонил- [65] и 3-трет-бутилкарбонила-минопиридины [66] литиируются по положению 4.

Литиирование производных пиридина, содержащих диметилоксазолиновую ориентирующую группу, требует использования 2,2,6,6-тетраметилпиперидида лития, в противном случае наблюдается присоединение металлоорганических соединений по положению 4. Сочетание этой реакции с окислением образующегося дигидропиридина кислородом воздуха представляет собой эффективный метод синтеза 4-алкилированных пиридинов [67]. Прямое получение магнийорганических производных пиридина требует, как показано ниже, более высокой температуры [68].

Рисунок 5. Раздел 5.5.1. Литий- и магнийорганические производные

Литиирование 2- и 4-трет-бутилоксикарбониламинопиридинов проходит только по положению 3. Этот процесс находит применение в синтезе азаиндолов; предварительно полученное на первой стадии 3-литийорганическое производное используют для введения метильной группы в положение 3 пиридинового цикла, дальнейшее литиирование боковой цепи (разд. 5.11.) обеспечивает подход к азаиндолам (разд. 17.17.7.). Приведённая ниже схема иллюстрирует синтез 5-азаиндола (пирроло[3,2-с]пиридина) [69]:

Рисунок 6. Раздел 5.5.1. Литий- и магнийорганические производные

Литиированные пиридины реагируют обычным образом с различными электрофильными реагентами; так, например, их можно ацилировать третичными амидами [70]:

Рисунок 7. Раздел 5.5.1. Литий- и магнийорганические производные

Галогенные заместители, использующиеся для прямого литиирования пиридинового цикла, в дальнейшем могут быть замещены нуклеофильными реагентами [71].

Рисунок 8. Раздел 5.5.1. Литий- и магнийорганические производные

Литиирование в результате обмена металл — галоген проходит селективно при наличии в молекуле ориентирующей группы [72]. В том случае, если в молекуле присутствует одновременно две ориентирующие группы, которые расположены в положениях 1,3, литиирование проходит селективно по атому углерода, расположенному между этими двумя группами [73].

Рисунок 9. Раздел 5.5.1. Литий- и магнийорганические производные

Атомы брома и йода в качестве заместителей в пиридиновом цикле также способствуют прямому металлированию, однако в этом случае оно сопровождается изомеризациями (аналогичными описанным в разд. 14.5.1.). Как показано на приведённой ниже схеме, изомеризация приводит к образованию более стабильного литиевого производного, то есть такого, в котором отрицательно заряженный атом углерода расположен между атомами с галогенными заместителями [74].

Рисунок 10. Раздел 5.5.1. Литий- и магнийорганические производные

При определённых условия можно провести селективное 2-литиирование N-оксидов пиридина. Один из ярких примеров — литиирование по положению 6 N-оксида 2-пивалоиламинопиридина, литиирование в этом случае проходит по положению, соседнему с группой N-O, а не с заместителем, ориентирующим в орто-положениях. Региоселективное С(2)-литиирование 3,4-диметоксипиридина также свидетельствует о влиянии N-оксидной группы [75].

Реактивы Гриньяра легко получаются в результате обмена галоген — металл из бром- и иодпиридинов; в качестве металлирующего агента используются изопропильные реактивы Гриньяра [76]. Следует отметить, что обмен магний — галоген в 2,5-дибромпиридине протекает аналогично обмену литий — галоген, то есть по положению 5; из других дибромпиридинов в результате обмена также образуются мономагнийорганические соединения. Получение пиридил-магний-галогенидов при низких температурах возможно даже в присутствии таких групп, как сложноэфирная и нитрильная. Хотя пиридил-магний-галогениды не столь удобны в синтезе различных производных пиридина, как соответствующие литиевые производные, однако в некоторых случаях они имеют очевидные преимущества.

Рисунок 11. Раздел 5.5.1. Литий- и магнийорганические производные


5.5.1. Литий- и магнийорганические производные

Список литературы к главе 5

Упражнения к главе 5

Глава 5

Дополнительно:


Переработка полимерных материалов / Книга представляет собой краткое руководство по технологии переработки полимеров в изделия. В ней в достаточно доступной форме рассмотрены вопросы подготовки сырья и изготовления изделий. Большое внимание уделено конструированию изделий из пластмасс, получению комбинированных материалов, размещению Переработка полимерных материалов
Книга представляет собой краткое руководство по технологии переработки ...
Электронные корреляции в молекулах / В книге автора из Великобритании излагаются современные методы теоретической химии, которые используются при уточнённых расчётах энергии молекул. Вычисление корреляционных поправок («корреляционных эффектов») к энергии молекул имеет большое значение при теоретическом рассмотрении механизмов химическЭлектронные корреляции в молекулах
В книге автора из Великобритании излагаются современные методы теоретической ...
Расчёты высокоэффективных полимеризационных процессов / В книге изложены методы расчёта оптимальных полимеризационных процессов на основе фундаментальных положений термодинамики, кинетики, реологии и макрокинетики. Особое внимание уделено составлению и анализу кинетических схем различных полимеризационных процессов. Рассмотрены вопросы автоматического реРасчёты высокоэффективных полимеризационных процессов
В книге изложены методы расчёта оптимальных полимеризационных процессов на ...
Химически активные полимеры и их применение / В сборнике описаны синтез, свойства и области применения основных химически активных полимеров: ионитов, редокситов, комплекситов и ионообменных смол, обладающих одновременно комплексообразующими и окислительно-восстановительными свойствами. Имеются работы по синтезу и исследованию свойств макропориХимически активные полимеры и их применение
В сборнике описаны синтез, свойства и области применения основных химически ...