11.1.1.2. Алкилирование
Диазины реагируют с алкилгалогенидами труднее, чем пиридин, с образованием четвертичных моносолей. Диалкилирование не удаётся осуществить при использовании алкилгалогенидов, однако с гораздо более реакционноспособными тетрафторборатами триалкилоксония могут быть получены дисоли для всех трёх диазинов [8].

Пиридазин наиболее активен в реакциях алкилирования, что также связано с взаимным отталкиванием двух неподелённых пар электронов связанных атомов азота. Такое явление известно как «α-эффект» и проявляется также, например, в большей нуклеофильности пероксида водорода по сравнению с водой.
Несимметрично замещённые диазины при алкилировании способны образовывать две изомерные четвертичные соли. На направление алкилирования в гораздо большей степени влияют стерические и индуктивные, нежели мезомерные эффекты заместителей. Например, 3-метилпиридазин алкилируется преимущественно по атому N(1), хотя на атоме N(2) сосредоточена большая электронная плотность. Аналогично алкилирование 3-метоки-6-метилпиридазина проходит по атому азота, соседнему с метальной группой, хотя, учитывая мезомерное влияние метоксгруппы, следовало бы ожидать алкилирования другого атома азота [9].

Глава 11
- 11. Диазины, пиридазины, пиримидины и пиразины: реакции и методы синтеза
- 11.1. Реакции с электрофильными реагентами
- 11.1.1. Присоединение по атому азота
- 11.1.1.1. Протонирование
- 11.1.1.2. Алкилирование
- 11.1.1.3. Окисление
- 11.1.2. Замещение при атоме углерода
- 11.1.2.1. Галогенирование
- 11.2. Реакции с окислителями
- 11.3. Реакции с нуклеофильными реагентами
- 11.3.1. Замещение атома водорода
- 11.3.1.1. Алкилирование и арилирование
- 11.3.1.2. Аминирование
- 11.3.2. Замещение других уходящих групп
- 11.4. Реакции с основаниями
- 11.4.1. Депротонирование при атоме углерода
- 11.4.2. Металлирование
- 11.5. Реакции С-металлированных диазинов
- 11.5.1. Литийорганические производные
- 11.5.2. Реакции, катализируемые палладием
- 11.6. Реакции с восстановителями
- 11.7. Реакции со свободными радикалами
- 11.8. Электроциклические реакции
- 11.9. N-оксиды диазинов
- 11.10. Оксидиазины
- 11.10.1. Строение оксидиазинов
- 11.10.2. Реакции оксидиазинов
- 11.10.2.1. Реакции с электрофильными реагентами
- 11.10.2.2. Реакции с нуклеофильными реагентами
- 11.10.2.3. Реакции с основаниями
- 11.10.2.4. Замещение атома кислорода
- 11.10.2.5. Реакции, катализируемые переходными металлами
- 11.10.2.6. Электроциклические реакции
- 11.11. Аминодиазины
- 11.12. Алкилдиазины
- 11.13. Четвертичные азиниевые соли
- 11.14. Синтез диазинов
- 11.14.1.1. Из 1,4-дикарбонильных соединений и гидразина
- 11.14.1.2. Реакцией циклоприсоединения 1,2,4,5-тетразина к производным ацетилена
- 11.14.1.3. С использованием других реакций циклоприсоединения
- 11.14.1.3.1. С использованием галогеносодержащих гидразонов
- 11.14.1.3.2. С использованием S,S-диоксидов тиофена
- 11.14.1.3.3. С использованием галогенозамещённых циклопропенов
- 11.14.2. Синтез пиримидинового кольца
- 11.14.2.1. Из 1,3-дикарбонильных соединений и соединений, содержащих фрагмент N-C-N
- 11.14.2.2. Реакцией циклоприсоединения 1,3,5-диазинов к производными ацетилена
- 11.14.2.3. Из 3-этоксиакрилоилизоцианата и первичных аминов
- 11.14.3. Синтез пиразинового цикла
- 11.14.3.1. Самоконденсацией 2-аминокетонов
- 11.14.3.2. Из 1,2-дикарбонильных соединений и 1,2-диаминов
- 11.14.3.3. Синтез пиразинов через сульфиды
- 11.14.4. Примеры некоторых важных синтезов диазинов
- 11.14.4.1. 4-Амино-5-циано-2-метилпиримидин
- 11.14.4.2. 4,6-Диамино-5-тиоформамидо-2-метилпиримидин
- 11.14.4.3. Карбоциклический бромвинилдезоксиуридин
- 11.14.4.4. Коелентеразин
- 11.14.4.5. 2,5-Диметил-3-н-пропилпиразин
- 11.15. Птеридины
Дополнительно:
Настоящая монография ставит своей задачей дать по возможности полное обобщение ...
Издание 1982 года. Сохранность хорошая. Справочник посвящён использованию ...
Стереохимия производных циклогексана Москва, 1958 год. Издательство иностранной литературы. Издательский переплёт. ...